Hvad er masse, hvordan beregnes den, og hvordan er den forskellig fra vægt?

Indholdsfortegnelse:

Hvad er masse, hvordan beregnes den, og hvordan er den forskellig fra vægt?
Hvad er masse, hvordan beregnes den, og hvordan er den forskellig fra vægt?
Anonim

Et koncept, som vi er bekendt med fra den tidlige barndom, er messen. Og alligevel, i løbet af fysik, er nogle vanskeligheder forbundet med dets undersøgelse. Derfor er det nødvendigt klart at definere, hvad masse er. Hvordan kan du genkende hende? Og hvorfor er det ikke lig med vægt?

Beregning af masse

Den naturvidenskabelige betydning af denne værdi er, at den bestemmer mængden af stof, der er indeholdt i kroppen. Til dets betegnelse er det sædvanligt at bruge det latinske bogstav m. Måleenheden i standardsystemet er kilogram. I opgaver og i hverdagen bruges dem også ofte uden for systemet: gram og tons.

I et skolefysikkursus er svaret på spørgsmålet: "Hvad er masse?" givet i undersøgelsen af fænomenet inerti. Så er det defineret som en krops evne til at modstå en ændring i hastigheden af dens bevægelse. Derfor kaldes massen også inert.

hvad er masse
hvad er masse

Hvad er vægt?

For det første er det en kraft, det vil sige en vektor. Masse er en skalær størrelse. Vægtvektoren er altid fastgjort til støtten eller ophænget og er rettet i samme retning som tyngdekraften, dvs. lodret ned.

Formlen til beregning af vægten afhænger af, omdenne støtte (suspension). I tilfælde af systemhvile bruges følgende udtryk:

Р=mg, hvor Р (bogstavet W bruges i engelske kilder) er kroppens vægt, g er accelerationen af det frie fald. For jorden tages g norm alt lig med 9,8 m/s2.

Masseformlen kan udledes af den: m=P / g.

Når du bevæger dig ned, det vil sige i retning af vægten, falder dens værdi. Derfor bliver formlen:

Р=m (g - a). Her er "a" systemets acceleration.

Det vil sige, når disse to accelerationer er lige store, observeres en tilstand af vægtløshed, når kropsvægten er nul.

Når kroppen begynder at bevæge sig opad, taler de om vægtøgning. I denne situation opstår en overbelastningstilstand. Fordi kropsvægten stiger, og dens formel vil se sådan ud:

P=m (g + a).

masseformel
masseformel

Hvordan er masse relateret til massefylde?

Meget enkelt. Jo større densiteten af det stof, som kroppen er sammensat af, jo vigtigere vil dens masse være. Densitet er trods alt defineret som forholdet mellem to størrelser. Den første af disse er masse, volumen er den anden. For at angive denne værdi blev det græske bogstav ρ valgt. Måleenheden er forholdet mellem kilogram og kubikmeter.

Baseret på ovenstående har masseformlen følgende form:

m=ρV, hvor bogstavet V angiver kroppens volumen.

massevolumen
massevolumen

Underholdende opgaver

Efter at have afklaret spørgsmålet om, hvad masse er, kan du begynde at løse problemer. De af demder har engagerende indhold, vil holde eleverne mere interesserede.

Opgave nummer 1. Tilstand: Nalle Plys fik to identiske liters gryder. Den ene indeholder honning, den anden indeholder olie. Hvordan ved man, hvilken honning der er i uden at åbne dem?

Beslutning. Densiteten af honning er større end for smør. Den første er 1430 kg/m3 og den anden er 920 kg/m3. Derfor vil den med honning være tungere med den samme mængde potter.

For mere præcist at besvare spørgsmålet om problemet, skal du beregne massen af honning og olie i potter. Deres volumen er kendt - det er 1 liter. Men i beregningerne skal du bruge en værdi i kubikmeter. Så den første ting at gøre er at oversætte. En m3 indeholder 1000 liter. Derfor skal du, når du beregner resultatet, tage en volumenværdi svarende til 0,001 m3.

Masseformlen kan nu bruges, hvor massefylde ganges med volumen. Efter simple beregninger opnåedes følgende masseværdier: 1,43 kg og 0,92 kg for henholdsvis honning og olie.

Svar: honninggryden er tungere.

beregne masse
beregne masse

Problem nr. 2. Tilstand: Klovnen løfter en vægt uden problemer, hvorpå der står, at dens masse er 500 kilo. Hvad er den faktiske masse af en vægt, hvis dens volumen er 5 liter, og materialet den er lavet af er kork?

Beslutning. I tabellen skal du finde værdien af korktætheden. Det er lig med 240 kg/m3. Nu skal du oversætte lydstyrkens værdi, du får 0,005 m3.

Når du kender disse mængder, er det ikke svært at bruge den allerede kendte formel tiltæl massen af den falske vægt. Det viser sig at være lig med 1,2 kg. Nu forstår jeg, hvorfor klovnen slet ikke er hård.

Svar. Den faktiske masse af kettlebell er 1,2 kg.

Problem nr. 3. Tilstand: Anden sad i en lampe, hvis volumen er ukendt. Men dens massefylde på det tidspunkt var 40.000 kg/m3. Da det blev frigivet fra flasken, begyndte det at have parametrene for en almindelig menneskekrop: volumen 0,08 m3, massefylde 1000 kg/m3. Hvad er lampens lydstyrke?

Beslutning. Først skal du finde ud af dens masse i normal tilstand. Det vil være lig med 80 kg. Nu kan vi gå videre til at finde lampens volumen. Vi vil antage, at Jean optager al plads inde i den. Så skal du dividere massen med massefylden, det vil sige 80 gange 40.000. Værdien vil være 0,002 m3. Hvilket er lig med to liter.

Svar. Lampens volumen er 2 liter.

Masseberegningsproblemer

Fortsættelsen af samtalen om, hvad masse er, bør være løsningen af opgaver relateret til livet. Her er to situationer, der tydeligt vil demonstrere anvendelsen af viden i praksis.

Problem nr. 4. Tilstand: I 1979 indtraf en tankskibsulykke, som resulterede i, at der kom olie ind i bugten. Dens slibning havde en diameter på 640 m og en tykkelse på omkring 208 cm. Hvad er massen af den spildte olie?

Beslutning. Oliens massefylde er 800 kg/m3. For at bruge den allerede kendte formel skal du kende plettens volumen. Det er nemt at beregne, om vi tager pladsen til en cylinder. Så bliver volumenformlen:

V=πr2h.

Desuden er r radius, og h er højden af cylinderen. Så vil lydstyrken være lig med 668794,88 m3. Nu kan du beregne massen. Det bliver sådan her: 535034904 kg.

Svar: massen af olie er omtrent lig med 535036 tons.

Problem 5. Tilstand: Længden af det længste telefonkabel er 15151 km. Hvad er massen af kobber, der blev fremstillet, hvis tværsnittet af ledningerne er 7,3 cm2?

Beslutning. Densiteten af kobber er 8900 kg/m3. Rumfanget findes af en formel, der indeholder produktet af arealet af basen og højden (her kablets længde) af cylinderen. Men først skal du konvertere dette område til kvadratmeter. Det vil sige divider dette tal med 10000. Efter beregninger viser det sig, at volumen af hele kablet er cirka lig med 11000 m3.

Nu skal du gange densitets- og volumenværdierne for at finde ud af, hvad massen er. Resultatet er tallet 97900000 kg.

Svar: massen af kobber er 97900 tons.

masse er
masse er

Endnu en masseudfordring

Problem 6. Tilstand: Det største lys, der vejede 89867 kg, var 2,59 m i diameter. Hvad var dets højde?

Beslutning. Voksdensitet - 700 kg/m3. Højden skal findes ud fra volumenformlen. Det vil sige, at V skal divideres med produktet af π og kvadratet af radius.

Og selve volumen er beregnet efter masse og massefylde. Det viser sig at være lig med 128,38 m3. Højden var 24,38 m.

Svar: lysets højde er 24,38 m.

Anbefalede: